A Brief Overview of Interactive Performance Capture Jinxiang Chai

Interactive Performance Capture

Capture Human performance

• At interactive frame rates

• High-end vs Low-end (Quality vs. quantity)

High-end Performance Capture

- Can accurately capture 3D performances
- Highly expensive (e.g., 100K+ for optical mocap)
- Usually very intrusive, require wearing markers, sensors, special suits.
- Mainly for animating movie and game characters

Current Performance Capture Technologies

"3D Rotoscoping": measuring 3D positions, orientations, velocities or accelerations automatically

Current high-end motion capture systems

- Electromagnetic
- Electromechanical
- Fiber optic
- Optical

Electromagnetic Mocap

Each sensor record 3D position and orientation

- Each sensor placed on joints of moving object
- Full-body motion capture needs at least 15 sensors
- Popular system:

http://www.ascension-tech.com/

Electromagnetic Mocap

Pros

- measure 3D positions and orientations
- no occlusion problems
- can capture multiple subjects simultaneously

- magnetic perturbations (metal)
- small capture volume
- cannot capture deformation (facial expression)
- hard to capture small bone movement (finger movement)
- not as accurate as optical mocap systems

Electromechanical Mocap

Each sensor measures 3D orientations

 including 3D accelerometers, 3D gyros, and 3D magnetometers

Electromechanical Mocap

Each sensor measures 3D orientations

Each sensor placed on joints of moving object

Full-body motion capture needs at least 15 sensors

Popular systems: http://www.xsens.com/

Electromechanical Mocap

Pros

- measure 3D orientations
- no occlusion problems
- can capture multiple subjects simultaneously
- large capture volume
- portable and outdoors capture (e.g. skiing)

- getting 3D position info is not easy
- the root positions is often measured with ultrasonic position sensors
- cannot capture deformation (facial expression)
- hard to capture small bone movement (finger motion)
- not as accurate as optical mocap system

Fiber Optic Mocap

Measures 3D position and orientation of entire tape

Binding the tape to the body

Popular systems: http:// www.measurand.com/

Fiber Optic Mocap

Pros

- measure 3D orientations and positions
- no occlusion problems
- can capture multiple subjects simultaneously
- go anywhere mocap system
- can capture hand/finger motion

- intrusive capture
- cannot capture deformation (facial expression)
- not as accurate as optical mocap system

Optical Mocap

Multiple calibrated cameras (>=8) digitize different views of performance

Wears retro-reflective markers

Accurately measures 3D positions of markers

Optical Mocap

Pros

- measure 3D positions and orientations
- the most accurate capture method
- very high frame rate
- can capture very detailed motion (body, finger, facial deformation, etc.)

- has occlusion problems
- hard to capture interactions among multiple actors
- limited capture volume
- expensive

Low-end Performance Capture

- Low-cost (about \$100)
- Non-intrusive, no markers, no special suits, no sensors
- Accessible to every one
- Mainly used for game interfaces or Natural User interfaces

Low-end Performance Capture

• Eyetoy released by Sony in 2003

- A camera with 320 by 240 resolution.
- obtain 2D silhouette images of human body

Low-end Performance Capture

• Wiimote released by Nitendo in 2006

 Infrared camera (2D pointing) +motion sensors (3d acceleration)

Motion Capture Using Depth Sensors

Kinect released by Microsoft in 2010

• Depth data+ color data

This class

- We will work on both high-end and lowend performance capture
- high-end: Vicon optical mocap

Low-end: Kinect mocap

Typical Issues

How to use vicon mocap technology for interactive performance?

• How to do programming with a single kinect and multiple kinects?

• How to use kinect capture for interactive performance capture?